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Abstract— The use of Kalman filter (KF) interferes with  steps are summarized as:
fault detection algorithms based on the residual between

estimated and measured variables, since the measured values K(t;)=P(t;)H ' (HP(t; )H" + R)™* (5)
are used to update the estimates. This feedback results in . g .

the estimates being pulled closer to the measured values, B(t:) = 2(t7) + K(t:)(2(t:) — H2(t;)) (6)
influencing the residuals in the process. Here we present a P(t;) =1 — K(t;)H)P(t;) @

fault detection scheme for systems that are being tracked by

a KF. Our approach combines an open-loop prediction over The KF has been the subject of extensive research and
an adaptive window and an information-based measure of applications ([2]).

the deviation of the Kalman estimate from the prediction to
improve fault detection.

B. Fault Detection and the Kalman Filter
We argue that in several situations the KF is in cross-
purposes with the fault detection. First, the KF is designed
A. Kalman Filter to filter any deviations in the measurements and predictions
by using the measurement updates. As a result the mag-
Consider a discrete-time controlled process that is go¥sityde of the residuak(t;) = z(t;) — Hi(t;) is reduced,
erned by a linear stochastic difference equation (1) and gfecting the fault detection capability. Second, when the

I. INTRODUCTION

measurement (2): measurement noise is high the error covariance is so large
that even a large residual falls well within its bounds.
x(ti) = Az(ti—1) + Bu(t;) + w(t;) (1) Furthermore, since the gain factitis not dependent on the
z(t;) = Hx(t;) + v(t;) (2) input matrix B, the covariance minimization is not affected

by any faults on the input ([3]).
w(t;), v(t;) represent the process and measurement noise
respectively and are assumed to be independent, white and [l. PRELIMINARIES
Gaussign with .probability _distributionAf(O,Q), N(0,R) A. n-step predictor
respectively. Given the noise in the process and measure-
ments, the KF [1] computes an unbiased estindate the We define ther-step predictor of the state, (¢;) to be the
statex by providing an optimal solution of the least-squares:-Step open-loop estimate of the statg(t;) is computed
method. This is achieved by recursively minimizing the recursively by taking the KF state estimate at tithe, and
posteriori estimate error covariandg(t;) = Ele(t;)e” (t;)]  then projecting it forward fon steps using equation (3). The
wheree(t;) = x(t;) —i(t;) is thea posteriorierror between covariance is also projected forward using equation (4).
the true state:(¢;) and thea posterioristate estimate(t;).

First the state and error variance estimates are projected 7, (¢,) = A"&(t;_,,) + Z A" Bu(t; ;) (8)
forward from timet;_; to time ¢, through the following =1
equations: n—1
Py(ti) = A"P(tin)(AT)" + ) AQATY (9)
L(t;) = AL(ti-1) + Bu(t;) ®3) i=0
P(t7) = AP(ti-)AT +Q (4)

Let X,,(t;) ~ N(Z(t;), P.(t;)) be the random variable

wheret; indicatesa priori values. An adaptive gain factor corresponding to the-step prediction. We defind, (t;) =

K minimizes (in the least-square sense) the error covariin (ti) =X (i), and Dy, (t;) ~ N (E[Dy(t;)], cov(Dy (t:))):

ance. Noisy measurements of the process are then used E[Dn(t)] = du(ts) = Fnl(ti) — @(t;)

to compute thea posteriori state estimate. Finally tha o 1% H(B

posteriori covariance estimate is computed. These three - n—1(ti—1) + K (t:) (H (Bu(t:)
+AZ(ti-1)) — 2(t:)) (10)
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1/(2x"=/2|P(t;)|'/?). Due to the potentially large
varianceS,, (¢;), L(z(t;) | X,.(t;)) may not be sufficient
for quick detection.

Thea posteriorin-steps prediction likelihood. (X, (t;) |
X(t;)) assesses the distance betwegrit;) and X (t;). We
examine the Kullback-LeiblerK L) divergence [4] between
X,.(t;) and X (;) which measures how different the two

distributions ar& KL(X,(t;), X(t;)) can be understood
as the average number of bits that are wasted by encoding
events from the predicted distribution (oversteps) with

a code based on the estimated distribution. Therefore, the
less bits are wasted, the more it is likely the system

behavior is nominal. We thus not&(X,,(t ), X () =
Fig. 1. A posteriori n-steps prediction likelihood (based oR'L KL(O(P (t:)) _X”(tZ)’ (t )) This number is typically
divergence). infinite as the surface unde€r(P,,(t:)) — fx, () is infinite
(see figure 1). We thus study the number o% wasted bits over
99.7% of X's variance instead to get a good approximation
(through Monte-Carlo (MC) simulation). Based on this, the
[1l. FAULT DETECTION fault indicator (F) mirrors the nominal one:

When the system is behaving nominally (without faults)
we expect the measurements, estimates andntséep N . . . .
prediction to be close to each other. We examine the quality~ (C(Fn(ti)) — L(z(t:) [ Xa(t:)) (K L(Xa(t:), X (t:)))pr

(13)
of the produced state estimate given the measures and the
open-loop estimate (with limited measure influence). Theherepr = 1 — pn.
probability of the estimated staté(t;) at any timet; given

the measurementgt;) and then-step predictionX,, (¢;) is B. Faul'.[ de_CISIOn )
given by: Considering the two classe¥ and F' and their respec-

. tive conditional likelihoodsL(N | z(t;), X, (t:)), L(F |
(t:)p(X(t:))  2(t;), X, (t;)), two decision functions are built, that dis-
n(ts)) criminate between the two classes give;) and X, (¢;):

~ p(z(ti) | Xn(t:), X (6)p(Xn(t:) | XEDPX(E))  gu(t) 2 log(L(z(t:) | Xn(t) + L(Xn(ts) | X(82))
(11) +log(pn)

For each value ofr, the higher the probability returned d
by this distribution, the higher we expect the system to ba"

nominal. gr(t;) = log(C(I:Dn(ti)) - L(2(t:) | Xu(t:))) (14)
A. Likelihood Indicators +K L(Xn(t:), X (t:)) + log(pr)

To make decisions, we use a likelihooH) (indicator: The overall decision function is then based on the sign of
L(N | z( D, X (t) Sn(2(t:), Xn(t), X (t:)) = gn (t:) — gr(t:) (15)

L(z(t:) | Xn(t)L(Xn(t:) | X(t:))py (12) and is  gven by: a fault occured if
on(2(ti), Xn(ti), X (t:)) <O,

where L(z(t;) | X,(t;)) is thea priori n-steps measure- o )
ment likelihood, L(X,(t;) | X(t;)) is the a posteriorin- ~C. Determiningn dynamically
steps prediction likelihood, angy is the fixed probability One key factor in the effectiveness of our fault detector is
that no fault occurs at each time step. Tderiori n-steps the value forn. Here, we propose to dynamically adapt
measurement likelihood (z(t;) | X, (t;)) is based on the We study the changes in the decision line (15) as a result of
distance between(t;) and z,(t;) = HZ,(t;) given the unit change im: this comes to comparing the decision lines
covarianceS, (t;) = HP,(t;)H™ . This distance is expected for ann andn+1-step predictors. We notg, ;1 ,, = 6, 11—
to be small under nominal behavior, and to increase whe¥y. This short paper precludes the writing of the complete

L(F | 2(t:), Xn(t:)

a fault occurs. We have: developments, so we give the reader a brief outline of our
~ N ~ methods: we study the deritative valuesipf ; ,, w.r.t. z(¢;)
L(z(t:) | Xa(t)) ~ N(Ea(ts), Sn(t)) and #,(t;), then the orientation of these two vectors of
=[x, (3(t) derivatives with respect to each other in the observation
space: if they are negatively oriented,stays unchanged,
where  f5 . (2) = C(P(t;))exp(—3(xz —
)P () (z — 2(t)) and C(P(t;)) = INote that it is not real distance, as it is not symmetric.



otherwise the sign of,,;1 , decides forn increment. For of
this we need to project the derivative with respectdt;) o}
to the observation spacé. being the angle between the 22:
vectors in the observation space, we have: o b

(Bz ti) 5n+1 n( 1))T(H35; i 5n+1 n(tz))
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where||.|| denotes thé, norm. The adaptation strategy for
n is then given by:

s S 0 S 2 n(ti+1) n(t )
else if 01,0 >0 n(tip1) =n(t;) —1 (16)

Fig. 2. Bottom graph: a simulated thermostat fails turning afbund

elsed, 1, <0 n(tiy1) =n(t;) +1 step370. Middle graph: identified modes (percentages). The RBPF with
. embedded fault detector alarms on early mode changes and Ipanticdes
D. Implementation weight that identify the wrong mode. Top graph: the percemtdglarming

particles (overl 00 particles). The bumps correspond to the system nominal

Algorithm 1 presents the filter loop at time step Itis 7 4 faulty mode changes.

initialized with #(0) = #,(0) = xo, P(0) = P,(0) = P,

and n = n,,. The implementation requires storing or

recomputing several values and matricés;_,,), K (ti—»), logical diagnosis, i.e. for deciding when to trigger thedat

P(t;_,). This is consistent with modern diagnosis enginegr returning to the former.

that work on a fixed temporal window [5], although increas- As a preliminary test, we plugged the fault detector into

ing the computational complexity of the KF. The followingthe RBPF and tracked a simulated noisy thermostat. The

results help in mitigating the computational effort: RBPF tracks multi-modal linear systems with Gaussian

n noise. The belief state is a mixture of Gaussians whose

) d"H(tN) dnts) = —A"K(timn)eltin) — (17) statistics are propagated with a KF. The particle weight is
Poii(ts) — Po(ti) = A"K (ti—n)HP(t;_,)(A™)" (18) computed as the observation probability:(t;) | X(t;)).

Our strategy uses the fault detector to assert the quality th

These relations appear on stepand 3. estimate and lowers the weight of particles that are notén th

correct mode. Figure 2 shows a run on a faulty thermostat

;: jt?:()jacrgmlzatjlgzgnfnllter prediction and update. (n < 50): the number of alarming particles rises at each
T ' mode change. Our version of the filter detects wrong modes
dp—1(tic1) = dp(ti—1) and faults almost instantly. Identification however degend
FAVK (8 )e(timnat) on the modes sampling.

Unfortunately, on large multi-dimensional continuous

dn(t:) = Adn-1(ti-1) + K(t:)(HBu(t:) spaces, the computational weight of the detector is very
+HA#(ti—1) — 2(t:)) heavy due to the MC calls for the KL computation.

Moreover, results are deceiving on systems with uncertain

3: n-steps prediction: . : . .
PSP parameters (high process noise) and precise sensing (low

Tn(t;) = du(t;) +2(t) observation noise). For these reasons, we are not using this
Po_i(tic1) = Pu(tic1) — A" 'K (ti—nsi1) detector in our current diagnosis engines.
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